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Background: Posttraumatic stress disorder (PTSD) is a heterogeneous disorder which can be diagnosed 
in many different ways according to the DSM-IV or DSM-5 manual [1].Because of this clinical 
heterogeneity it is important to determine subtypes of PTSD patients that share clinical and biological 
properties. A recent paper [2] showed that using canonical-correlation analysis (CCA) [3] between clinical 
measures and functional connectivity (FC) estimated from resting-state(rs-) fMRI one can identify 
neurophysiological subtypes (“biotypes”) in a fully data-driven way for patients with major depression 
disorder (MDD).  Similar to MDD, PTSD patients also have shown abnormalities in rs-fMRI connectivity 
within the default mode (DMN), saliency network (SN) and the central executive network (CEN) [4, 5] 
which points to rs-fMRI as a promising measure in determining biotypes in PTSD. In addition the altered 
activity of DMN, SN and CEN has been proposed to be associated with different profiles of clinical 
symptoms [5]. Therefore the combination of rs-fMRI and clinical data seems to be an optimal way to 
tackle the heterogeneity of PTSD and determine sensible subtypes. 

Goal: Using a similar approach to [2] we will utilize the full resting-state fMRI data of the ENIGMA-PGC 
PTSD consortium by: 

1. Finding multivariate associations between the clinical data (measured via the CAPS interview) 
and rs-fMRI functional connectivity (FC) using sparse CCA of PTSD patients 

2. Cluster the canonical FC space to obtain biotypes of PTSD patients 

3. Determine clinical and FC differences of the individual biotypes 

4. Verify the discovered differences in hold-out data to determine test-retest reliability  

Methods: Rs-fMRI will be preprocessed according to the ENIGMA rs-fMRI pipeline [6] and parcellated 
using a high-resolution parcellation (such as the Power parcellation [7] adjusted to include subcortical 
regions such as amygdala, ACC, etc.). Functional connectivity (FC) will be calculated using pairwise 
Pearson linear correlations between the individual ROIs and Fisher’s r-to-z transformations will be 
applied. Nuisance regression with sites, age, etc. will be performed and the cleaned FC measures will be 
entered into a sparse-CCA analysis [8-10] with individual CAPS scores as clinical measures. Only patients 
with available CAPS scores will be included in this part of the analysis.  



CCA determines multivariate linear combinations of clinical and FC data which are maximally correlated. 
However, in the case where more features than subjects are present in the data CCA cannot find unique 
canonical weights and becomes unstable [9, 10]. Therefore, we will use sparse-CCA which includes a 
penalty for the canonical weights forcing some of their values to become exactly zero. This also increases 
the interpretability of the model because not all FC/CAPS scores will be part of the canonical variable. 
The level of sparsity can be determined in a data-driven way by either performing permutation testing 
[8, 9] or cross-validation [11] for each modality individually.  Also the amount of canonical variables to 
choose can be found in a formalized way using permutation testing [12]. The FC data will then be 
transformed into its canonical space creating a single brain score per canonical weight and clustering will 
be performed. We will apply common clustering algorithms such as hierarchical clustering or k-means 
clustering and estimate the number of clusters in a data-driven way using measures such as the Silhoutte 
score [13] or the gap statistic [14].  
After the optimal number of cluster is identified we will assign the individual patients to their biotypes 
and perform statistical tests on their clinical and FC measures. In that way we will try to determine group 
differences between patients belonging to different biotypes. The discovered differences will then be 
verified in patients which were not used for the discovery of biotypes.  

Preliminary results: As a proof-of-concept we applied the proposed analysis plan to data of 32 PTSD 
patients (16 male/16 female) from the AMC Amsterdam cohort. The sample is too small to obtain any 
reliable results and the results are presented here for visualization purposes only. Figure 1 shows the 
results of the sparse-CCA analysis using 2 factors with their respective canonical correlations. In Figure 2 
we show the obtained clusters for a 2 cluster solution using hierarchical clustering. Figure 3 shows the 
average FC of patients in the two clusters.  These preliminary results show the feasibility of the 
approach. However, these results cannot be seen as robust because of the small sample size and 
therefore require the full ENIGMA-PGC PTSD cohort to enhance our understanding of the heterogeneity 
of PTSD.  

 



 

Figure 1: Results of the sparse CCA analysis with 2 factors 

 

Figure 2: Clustering results based on two sparse-CCA FC factors 



 

Figure 3: The FC of individual clusters 
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