

ENIGMA PTSD Work Group Proposal: Structural Covariance Between Regions with Cortical Thickness Reduction in PTSD

Delin Sun^{a,b}

^a Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham NC

^b VA Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC), Durham, NC

Introduction

PTSD is a mental health problem that some people develop after experiencing or witnessing a life-threatening event, like combat, a natural disaster, a car accident, or sexual assault¹. Trauma and chronic stress elicit synaptic dysconnectivity^{2,3} and synaptic density reduction⁴ that are associated with brain morphometric changes. PTSD is accompanied with cortical thickness reduction in various brain regions^{5,6} (however, see Li et al.⁷).

Structural covariance measures of cortico-to-cortical connectivity corresponding to transcriptional brain networks⁸ and anatomical connectivity based on white matter fiber tractography⁹. It may index mutually trophic factors between distant regions that are anatomically connected. Structural covariance is sensitive to aberrant connectivity and brain network organization in PTSD¹⁰⁻¹². It is speculated that neural connections can propagate pathological processes to distant cortical regions¹³.

A study recently published in American Journal of Psychiatry¹³ reported that Structural covariance was significantly increased among regions with the most extensive thickness reductions, irrespective of whether it was measured in patients or healthy control subjects. The findings suggest that cortico-cortical connectivity can provide an explanation for the irregular topographic distribution of thickness reduction, and the regions that are affected in patients are part of networks that are present in healthy individuals.

Little is known about the association between cortical thickness reduction and structural covariance in PTSD. Few studies have reported structural covariance between all pairs of regions in PTSD, which may be due to the difficulty of detecting significance after correcting multiple comparisons. Moreover, studies of PTSD based on small samples are hard to fully understand the effects of variables such as age, gender, trauma experience, and are hard to reveal robust and generalizable results. We aimed to investigate the structural covariance between regions with cortical thickness reduction in PTSD. We specifically hypothesized that the structural covariance between regions with cortical thickness reduction in PTSD patients would be stronger compared with the structural covariance between randomly selected regions in both PTSD and controls, would be stronger in patients with PTSD than in controls, would be stronger in PTSD patients with more severe symptoms, and would be modulated by factors such as age and gender.

Methods

Participants

The ENIGMA-PGC PTSD Working Group aggregated data from 29 cohorts in five countries. PTSD patients and control subjects had varying levels of trauma exposure. We will analyze cortical thickness data from 3,505 subjects, including 1,344 PTSD patients and 2,131 control subjects. Harmonized scales of childhood trauma and alcohol use disorder (AUD) were obtained from the sites in addition to SCID diagnoses and PTSD severity scale scores. All participating sites obtained approval from local institutional review boards and ethics committees. All study participants provided written informed consent.

Imaging and Statistical Analysis

Raw structural imaging (T1) data obtained from previously conducted cross-sectional case-control studies were analyzed at Duke University through a standardized neuroimaging and QC pipeline developed by the ENIGMA Consortium (need citation). Cortical parcellation was performed with FreeSurfer (<http://surfer.nmr.mgh.harvard.edu/>) that calculates regional mean cortical thickness and surface area measures for 148 regions (74 outputs in each hemisphere according to the Destrieux Atlas¹⁴.

Structural Covariance Analysis

The pipeline of the structural covariance analysis is shown in Fig. 1. The influence of age, sex, and study site were regressed out from the association with cortical thickness values. Age was not regressed out when investigating the interaction of diagnosis and age, and sex was not regressed out when investigating the interaction of diagnosis and sex. After this step, group-specific matrices of structural covariance between all possible pairs of 148 were calculated based on Pearson's correlation coefficients. The r-to-z transformation was applied to all correlation coefficients to improve normality¹³. Cortical regions were ranked from highest to lowest according to the effect size of cortical thickness reductions.

To investigate whether structural covariance is significantly stronger between regions with cortical thickness reductions compared with randomly selected sets of regions, we will employ permutation testing for structural covariance measured in each subject group separately and for the between-group difference. The mean structural covariance between the top- n regions with the most significant cortical thickness reductions will be computed. To generate a null distribution for this mean value, the mean structural covariance will be computed between 5,000 randomly chosen sets of n regions. The proportion of random region sets for which the mean structural covariance exceeds or equals the mean structural covariance in the actual (nonrandom) data will provide a p value for the null hypothesis of equality in structural covariance among regions of cortical thickness reductions and randomly chosen pairs of regions. This procedure will be repeated independently for $n=2, \dots, 148$, and the mean structural covariance between the top- n regions with the most significant cortical thickness reductions will be plotted as a function of n . The area under this plot of mean structural covariance as a function of n will be used to compute a global p value for all values of n .

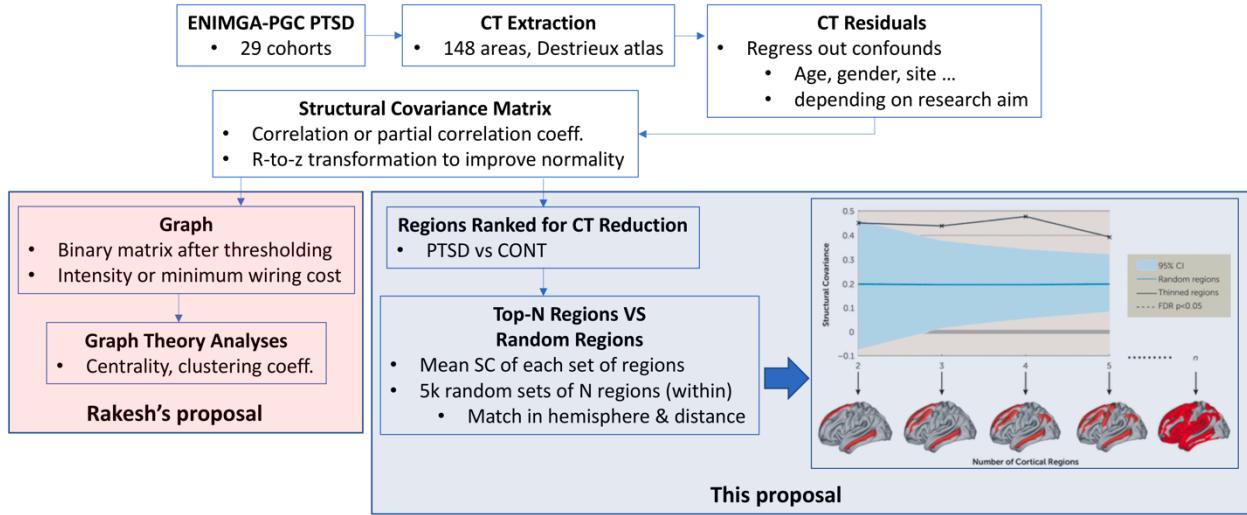


Figure 1. Pipeline for structural covariance analysis.

References

- 1 Shalev, A., Liberzon, I. & Marmar, C. Post-Traumatic Stress Disorder. *New Engl J Med* **376**, 2459-2469, doi:10.1056/NEJMra1612499 (2017).
- 2 Pitman, R. K. *et al.* Biological studies of post-traumatic stress disorder. *Nat Rev Neurosci* **13**, 769-787, doi:10.1038/nrn3339 (2012).
- 3 Popoli, M., Yan, Z., McEwen, B. S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. *Nat Rev Neurosci* **13**, 22-37, doi:10.1038/nrn3138 (2012).
- 4 Kassem, M. S. *et al.* Stress-Induced Grey Matter Loss Determined by MRI Is Primarily Due to Loss of Dendrites and Their Synapses. *Mol Neurobiol* **47**, 645-661, doi:10.1007/s12035-012-8365-7 (2013).
- 5 Mueller, S. G. *et al.* Evidence for disrupted gray matter structural connectivity in posttraumatic stress disorder. *Psychiatr Res-Neuroim* **234**, 194-201, doi:10.1016/j.psychresns.2015.09.006 (2015).
- 6 Wrocklage, K. M. *et al.* Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD. *Eur Neuropsychopharmacol* **27**, 515-525, doi:10.1016/j.euroneuro.2017.02.010 (2017).
- 7 Li, S. *et al.* Posttraumatic Stress Disorder: Structural Characterization with 3-T MR Imaging. *Radiology*, 150477, doi:10.1148/radiol.2016150477 (2016).
- 8 Romero-Garcia, R. *et al.* Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. *Neuroimage* **171**, 256-267, doi:10.1016/j.neuroimage.2017.12.060 (2018).
- 9 Gong, G. L., He, Y., Chen, Z. J. & Evans, A. C. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. *Neuroimage* **59**, 1239-1248, doi:10.1016/j.neuroimage.2011.08.017 (2012).
- 10 Sun, D., Peverill, M. R., Swanson, C. S., McLaughlin, K. A. & Morey, R. A. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder. *J Psychiatr Res* **98**, 70-77, doi:10.1016/j.jpsychires.2017.12.015 (2017).
- 11 Sun, D., Haswell, C. C., Morey, R. A. & De Bellis, M. D. Brain structural covariance network centrality in maltreated youth with PTSD and in maltreated youth resilient to PTSD. *Dev Psychopathol*, 1-15, doi:10.1017/S0954579418000093 (2018).
- 12 Sun, D. *et al.* Brain Structural Covariance Network Topology in Remitted Posttraumatic Stress Disorder. *Front Psychiatry* **9**, doi:ARTN 90 10.3389/fpsyg.2018.00090 (2018).
- 13 Wannan, C. M. J. *et al.* Evidence for Network-Based Cortical Thickness Reductions in Schizophrenia. *Am J Psychiatry* **176**, 552-563, doi:10.1176/appi.ajp.2019.18040380 (2019).
- 14 Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. *Neuroimage* **53**, 1-15, doi:10.1016/j.neuroimage.2010.06.010 (2010).