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A. Relevant Background 
 

Interpersonal Violence (IPV) exposure, compared to other traumatic experiences such as motor vehicle 
accidents, greatly increases an individual’s risk for developing posttraumatic stress disorder (PTSD) 1–3. 
Relative to other anxiety disorders, PTSD carries a particularly high burden to the individual and society in the 
form of lowered quality of life and high comorbidity 3–5. Even the gold-standard treatment for PTSD, Prolonged 
Exposure (PE) lacks efficacy, with remission rates of only ~40-60% for IPV victims6,7. As such, improvement of 
biomarkers for PTSD and treatment efficacy is paramount. Current neurocircuitry models of PTSD 
conceptualize the disorder as one of deficits in fear processing and emotion regulation, with ample evidence to 
suggest that PTSD is associated with increased acquisition of conditioned fear responses and resistance to 
extinguishing fears, 8–11 along with hypervigilance to threat cues12,13. These models generally focus on isolated 
nodes of the brain or functional connectivity between two nodes within a circuit. Indeed, the two most widely 
dominant neuroimaging analytic techniques include voxelwise functional activation analyses and voxelwise 
seed based-analyses during fMRI tasks that are designed to activate these regions. The former approach 
assumes each brain region (e.g., amygdala) acts as an isolated unit. The latter approach assumes there are 
only bivariate relationships between regions (e.g., amygdala-medial prefrontal cortex connectivity) that also 
operate in isolation from other bivariate relationships. As such, univariate and seed-based approaches carry 
considerable assumptions and limitations. An emerging literature posits that neural dysfunction in PTSD may 
be associated with dysfunction in large-scale functional networks rather than individual nodes or circuits14–29. 
This literature utilizes innovative analytical tools in neuroimaging to investigate neural network structure at 
rest14,16–20,22,25,27,28 and during emotion15,24- and threat-processing21 tasks to glean a better understanding of 
mechanisms for and consequences of network dysfunction in PTSD.  
Functional Network Structure and Community Detection.  Graph theory principles from the field of 
mathematics have proven particularly useful in neuroimaging for partitioning whole-brain signals into discrete 
networks and for characterizing properties of the nodes involved in the graph. The principles behind graph 
theory examine properties of networks and conceptualize these elements based on their intercorrelations30. 
While several large-scale brain networks have been identified and studied in the context of disease, three 
canonical networks appear to play a particularly important role in cognitive function and psychopathology, and 
therefore have been especially well defined. These networks, referred to as the central executive network 
(CEN), salience network (SN), and default mode network (DMN), are commonly found to be intrinsically 
coupled both in task and at rest31,32 and are often cited as networks of altered connectivity in PTSD18,20–

25,27,28,33,34. Briefly, the CEN is anchored in the dorsal lateral prefrontal cortex and posterior parietal cortex and 
plays a role in working memory, executive functioning and attention; the SN is anchored in the insular cortex 
and dACC and is important for detecting and mapping internally and externally salient events; and the DMN is 
important for self-referential mental activity and is anchored in the posterior cingulate and mPFC32. The CEN, 
SN, and DMN are generally conceptualized as three cohesive networks; thus, disruptions or fragmentation in 
their connectivity structure may underlie the uni- and bi-variate dysconnectivity observed in PTSD. 

Several principles of graph theory are important for understanding brain network communication and 
dynamics that may be altered in psychopathology. The participation coefficient is a metric that reflects how well 
distributed a node’s connections are throughout the graph, or the degree to which a node is connected to other 
nodes in separate modules 35,36. The value of the participation coefficient will be close to one if the links are 
uniformly distributed amongst all modules and will approach zero if all of the connections are contained within 
the node’s module 35.  A graph is considered highly modular if the average participation coefficient approaches 
zero, as this value indicates a segregated graph. Modular organization within biological systems has several 
theorized functions36 that may become maladaptive in affective disorders such as PTSD. Researchers have 
demonstrated that modular organization promotes flexibility and adaptive response to varying environments 
through evolution and development 37–39 and it is theorized that modular systems are evolutionarily 
advantageous because systems with highly compartmentalized modules are less vulnerable to environmental 
perturbations than highly-interdependent systems 40–42. Importantly for brain organization, modular networks 
have been demonstrated to promote and support functional specialization in information distribution and 
processing 43,44.  

While several methods exist for determination of modular structure through community detection in 
graphs, few have been applied to PTSD samples and many have significant limitations. For brain functional 
network detection, the most pressing limitation is the resolution limit of modularity-maximizing functions. Briefly, 
when utilizing a modularity-maximizing function such as the popular Newman’s Modularity45–47, the investigator 
must choose a resolution parameter that defines the appropriate number of modules for the algorithm to 



identify. This choice imposes an experimenter bias on an otherwise data-driven technique as well as a limit on 
the number of modules that can be detected, ultimately biasing results45 and limiting the depth of hypotheses 
that can be tested; thus, development and validation of community detection algorithms that lack a resolution 
limit will be essential for determining true network alterations in affective psychopathology.  
Altered Large-Scale Organization May Better Explain Traditional Univariate Neurocircuitry Deficits in 
PTSD. While the “optimal” degree of functional or structural network modularity is yet unknown, it follows that 
that alterations in modularity and fragmentation of network structure might result in maladaptive specialization 
of higher-order processing functions involved in emotional regulation and cognitive control in PTSD patients, 
deficits which are traditionally attributed to uni- and bi-variate dysconnectivity. For example, the altered 
connectivity of the fear-processing circuitry in PTSD (i.e. the amygdala, insular cortex, and dACC) is 
traditionally interpreted as bivariate hyperconnectivity of nodes within that circuit48; however, these nodes also 
form the SN and thus it is unclear at which level of organization the dysfunction lies. It is possible that the 
node-level hyperconnectivity observed in PTSD is better explained by a more integrated SN, resulting in 
increased connectivity of nodes within the SN in PTSD patients and forming a hyperspecialized network for 
salience detection. Similarly, the diminished ability of PTSD patients to extinguish fears, often attributed to 
hypoactivity of the hippocampus-vmPFC circuity, might be better explained by increased fragmentation or 
reduced within-network strength of the DMN and CEN such that communication between these essential 
nodes is disrupted. Examining dysfunction in fear circuitry from a network, rather than bivariate, level as 
proposed in this project may reveal complex dynamics that traditional models fail to detect, resulting in a fuller 
understanding of neural dysfunction in PTSD and the opportunity to examine network organization as a more 
reliable biomarker of psychopathology than univariate measures49.  

However, strong tests of hypotheses pertaining to network specialization in PTSD require robust and 
reliable community detection. Towards this goal, this proposal will utilize a new method of community detection 
that does not suffer from drawbacks of resolution limits and relies on the quality function Asymptotical Surprise 
50,51. This method will allow for testing of a more contemporary network model of PTSD that includes relative 
fragmentation and hyper-connectivity of large-scale functional networks. This method, through the use of a 
Partitioning Cost Optimization (PACO) algorithm52, has recently been applied to resting-state fMRI data in 
healthy adults and schizophrenia patients in an attempt to circumvent the resolution limit of most community 
detection algorithms 53,54 and has proven to outperform other community detection methods52, but has yet to be 
used in a PTSD sample or any other domain of affective psychopathology. PACO is a non-deterministic, 
agglomerative algorithm that maximizes partition quality by partitioning the graph based on proportions of 
internal and external edges from the connectivity matrix. Modularity is then determined by the probability of 
randomly drawing an internal edge from the distribution. PACO is also an entirely data-driven method because 
it does not require the selection of a resolution parameter and therefore can identify much smaller, more 
specific, functional modules based on unique connectivity patterns. PACO has the unique ability to illustrate 
relative fragmentation of canonical networks that are typically examined as whole, cohesive networks in 
psychopathology research and therefore can be used to identify underlying altered connectivity in PTSD. Thus, 
the potential for PACO in identifying specific, network-level dysfunction in PTSD is exciting and with clear 
theoretical implications. 
 
B. Research Goal and Hypotheses 
 
Goal: We propose to utilize the resting-state fMRI data of the ENIGMA-PGC PTSD consortium to characterize 
topological organization of functional network properties in adult women with IPV-related PTSD. To achieve 
this goal, we propose to use for the first time novel algorithms (e.g., PACO and Asymptotic Surprise) to define 
patterns of intrinsic network organization in a large PTSD sample and thereby define a contemporary and more 
neurophysiologically plausible understanding of the impact of PTSD on the organization of functional networks.  
 
Hypotheses:  

1. Relative to healthy controls, women with PTSD will demonstrate unique patterns of modular 
organization characterized by reduced global participation coefficient, increased modularity of the 
Salience Network, and decreased within-network strength of the Default Mode and Central Executive 
Networks. 

2. Within the PTSD group, global participation coefficient, modularity of the Salience Network, and within-
network strength of the Default Mode and Central Executive Networks will scale linearly with severity of 
IPV-exposure and psychiatric symptoms.  



 
 
C. Analysis Plan and Preliminary Results 
 

All resting-state fMRI scans will be preprocessed under the protocols from the ENIGMA consortium55. 
Following preprocessing, we will first define individual modular brain organization using a 500 regions-of-
interest (ROI) atlas56. For each participant, we will calculate the mean time course of voxels within each ROI, 
excluding voxels within ROIs that were outside of the brain for a given individual, resulting in connectivity 
matrix for each participant. These matrices will be concatenated across participants, correlated, and r-to-z 
transformed, and all diagonals and negative values will be set to zero within the matrix. Each subject’s 
connectivity matrix will then be thresholded to ensure a large, sparse graph with noisy connections removed 
and every node connected to at least one other node. Global modular brain organization for the group and 
each subject will be assessed through the use of the community detection quality function Asymptotical 
Surprise 50,51. We will run the PACO algorithm 200,000 times to ensure identification of the optimal value of 
Asymptotical Surprise. This step will produce the number of functional modules for the group along with a 
spatial network map that will be applied to each individual. We will use the Brain Connectivity Toolbox within 
Matlab57 to calculate network metrics, including participation coefficients and within-network strength for each 
individual. Each subject’s global participation coefficient and within-network strength for each canonical 
network (SN, DMN, and CEN) will be carried forward to second-level analyses as the main variables of 
interest.  

Finally, we will examine the relationships amongst modular brain organization (i.e. within-network 
strength of modules and global participation coefficient), group membership (PTSD or control) and individual 
difference variables including trauma severity score and PTSD symptom severity. We will use a linear 
regression model approach to examine relationships with these variables and network metrics, controlling for 
participant age and relevant clinical factors including comorbid psychiatric disorders. This step will allow for 
evaluation of the differences in large-scale network organization between groups in terms of the relative 
breakdown of regulatory functional connectivity in PTSD that is traditionally explained by uni- and bivariate 
models. 
 
Preliminary Results. As a proof-of-concept, we used our existing resting-state dataset from 106 adult women 
with (n=85) and without (n=21) IPV-related PTSD to optimize atlas selection and the PACO algorithm. Due to 
the small size of our control dataset in relation to the PTSD dataset, we cannot draw any conclusions about 
differences between groups in network topology using this method. However, our preliminary results suggest 
that we can indeed utilize PACO and Asymptotical Surprise to resolve small communities within resting-state 
networks (Figure 1) and that these communities represent anatomically meaningful networks (Figure 2) that 
may relate to trauma exposure (Figure 3). The ENIGMA-PGC PTSD cohort would greatly assist in improving 
our sample size in both groups such that more robust conclusions can be made regarding altered network 
topology in a heterogeneous PTSD sample.   

 

  

Figure 1: Group-level correlation matrix 
representing 20 unique communities 

resolved by PACO. 



  
 

 
  

Figure 2: Group-level spatial map representing 20 unique communities defined by PACO.  

Figure 3: Participation coefficient of the Salience Network 
is inversely related to number of direct assault exposures 
in the PTSD group at a trend level (t(80) =-1.89, p = .06) 



D. Analysis Personnel 
1. Marisa Ross, MPA 
2. Josh Cisler, PhD 

 
E. Resources Needed 

1. Preprocessed resting state fMRI timecourses from adult female subjects in the PGC-PTSD dataset 
2. Clinical variables including PTSD symptom severity, types/amount of trauma exposure, childhood 

trauma, comorbid psychiatric diagnoses, and  chronological age.  
3. Relevant scanner and scan parameters for resting state fMRI dataset. 

 
F. Timeline 
 
We anticipate this project to take approximately 4 months to complete.  
 
G. Collaboration 
 
We agree to follow the standard PGC policy regarding secondary analyses. PGC investigators who are not 
named on this proposal but wish to substantively contribute to the analysis and manuscript are welcome to 
contact the proposing group to discuss joining the proposal.  
 
H. Authorship 
 
We  will  follow  the  authorship  policy  of  the  PGC-PTSD  which  can  be  found  at https://pgc-ptsd.com/wp-
content/uploads/2017/06/Authorship-Guidelines-PGC-PTSD.pdf 

a) Are   you   following   the   authorship   policies   of   the   groups   involved? YES  
b) Will there be a writing group and if so, who will be included? The writing group will be comprised of 

the investigative team listed above (Marisa Ross and Josh Cisler). 
c) What groups or individuals will be listed as authors? Authors will include the writing group (M.R. 

and J.C.) plus individual and group contributors of data and analysis from each site (generally 
2-3 co-authors from each site). 

d) Will  PGC  members  not  listed  as  named  authors  be  listed  at  the  end  of  the  manuscript? All 
individuals  who  meet  the  criteria  established  in  the  PGC-PTSD  authorship  policy  will  be  
co-authors. Other PGC members will not be listed at the end of the manuscript. 

e) Will PGC members or groups be listed as “collaborators” on the PubMed  abstract  page? All 
individuals and groups who meet the authorship criteria of the PGC-PTSD authorship policy will 
be listed as collaborators on the PubMed abstract page. No other individuals or groups will be 
listed. 

f) How will funding sources be handled or acknowledged? All funding sources that supported data 
collection and analysis will be listed in the manuscript. 

  

https://pgc-ptsd.com/wp-content/uploads/2017/06/Authorship-Guidelines-PGC-PTSD.pdf
https://pgc-ptsd.com/wp-content/uploads/2017/06/Authorship-Guidelines-PGC-PTSD.pdf
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