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Abstract (<150 words)

Posttraumatic stress disorder (PTSD) is associated with abnormal static resting-state functional
connectivity (rsFC), especially in amygdala, hippocampus, anterior cingulate cortex (ACC) and
medial prefrontal cortex (MPFC). However, little is known about PTSD-related dynamic changes
in functional connectivity. We hypothesize that patients with PTSD is associated with reduced
temporal variability of functional connectivity than trauma-exposed controls based on
compromised abilities of PTSD patients to dynamically adjust behaviors and thoughts to
changing conditions and a preoccupation with trauma-related experiences. We will compare
patients with PTSD (N~=1500) to trauma-exposed controls (N~=1500) from ENIGMA-PGC
PTSD project on dynamic rsFC based on the standard deviations in rsFC of amygdala,
hippocampus and mPFC over a series of sliding windows. The proposed research may advance
knowledges of fluctuating communications among brain systems in PTSD.
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Background:

Posttraumatic Stress Disorder (PTSD) is a mental health problem that some people develop
after experiencing or witnessing a life-threatening event, like combat, a natural disaster, a car
accident, or sexual assault (Shalev et al, 2017). Previous studies have documented several
PTSD-related brain areas including amygdala, hippocampus, medial prefrontal cortex (mPFC),
anterior cingulate cortex (ACC) and insula (Brown et al, 2014; Morey et al, 2012; Morey et al,
2016), that are associated with emotion, memory and executive functions (Shalev et al, 2017).
The methodological development in resting-state functional magnetic resonance imaging (fMRI)
method makes it straightforward to compare brain activity across groups without relying on task
demands and instructions, whereas functional connectivity is a common analysis for resting-
state fMRI data and refers to measures of correlation between pairs of fMRI time series
obtained from different brain regions (Lee et al, 2013; van den Heuvel and Pol, 2010). Previous
studies showed that PTSD is associated with larger resting-state functional connectivity (rsFC)
between amygdala and insula (Rabinak et al, 2011), smaller amygdala-hippocampus rsFC
(Sripada et al, 2012), and larger amygdala-ACC/dorsal mPFC rsFC (Brown et al, 2014). A
recent review reported increased rsFC in salience network but decreased rsFC in default mode
network in PTSD (Koch et al, 2016).

Most of rsFC studies on PTSD utilized the static functional connectivity method, which assumes
that functional connectivity between regions is stationary over time (Koch et al, 2016). However,
static rsFC outputs only one connectivity value per voxel during the entire length of the scan,
and potentially leads to loss of information and sensitivity to the underlying dynamic neural
processes (Allen et al, 2014). By contrast, nonstationary and spontaneous relationships exist in
rsFC regardless of conscious cognitive processing (Hutchison et al, 2013). Further, dynamic
variations in rsFC are relevant to changes in vigilance (Thompson et al, 2013), arousal (Chang
et al, 2013), emotional state (Cribben et al, 2012), and behavioral performance (Jia et al, 2014).
A recent study by Jin et al (2017) showed that patients with PTSD were associated with
stronger static but weaker dynamic rsFC, suggesting compromised abilities in PTSD patients to
dynamically adjust behaviors and thoughts to changing conditions. The decreased dynamic
rsFC has also been detected in other psychiatric disorders (Sakoglu et al, 2010), and was found
to relate with compromised behavioral performance in healthy controls (Jia et al, 2014).
Interestingly, dynamic rsFC exhibited higher accuracy than static rsFC in differentiating PTSD
from trauma-exposed controls with machine learning (Jin et al, 2017).

Unfortunately, to the best of our knowledge, there is only one study by Jin et al (2017)
investigating dynamic rsFC in patients with PTSD among Chinese earthquake survivors. The
sample size in their study is also relatively small (N < 100 per group). Little is known about
whether their findings could be generalized to a larger sample size with participants of diverse
trauma types. Moreover, it is still unclear how rsFC is affected between areas important to
PTSD, including amygdala, hippocampus, ACC and mPFC. By expanding our investigation into
a larger sample size (N~=1,500 per group) with participants from diverse sites and
accompanied with different trauma types, we may delineate the dynamic functional connections
between areas in PTSD without the bias of trauma type and demographic information. The
knowledge gained may contribute to advancing our understanding of the neurobiology of PTSD
and in future may shed light on treatments for PTSD.

Specific Aims and Objectives:

Aim: Investigate Dynamic rsFC in PTSD. Diagnosis of PTSD will be performed with the
Clinician Administration PTSD Scale (CAPS). Measures of brain activity from resting-state
functional MRI scans, obtained from the ENIGMA-PTSD project proposed in this application, will
be analyzed for dynamic rsFC. Given the compromised abilities of PTSD patients to dynamically




adjust behaviors and thoughts to changing conditions and a preoccupation with trauma-related
experiences, we hypothesize that PTSD patients compared to trauma-exposed controls will be
associated with reduced dynamic rsFC between important seed areas, including amygdala,
hippocampus, ACC and mPFC, and the rest of the brain.

Research Plan:

Participants: We will target PTSD patients from the ENIGMA-PTSD project to achieve detailed
clinical measures including PTSD scores. The sample size of N~=1500 per group will provide
excellent power to make inferences about brain dynamic rsFC associated with differences
between PTSD patients and trauma-exposed controls. We will exclude all participants with Axis
| disorders except those with PTSD, major depression, and past substance abuse. We will
exclude participants with significant neurological disorders (e.g. seizure, stroke), major
neurological surgery, TBI, and significant cardiorespiratory compromise (e.g. COPD). However,
present substance abuse of nicotine products will be permitted. All participants with
contraindication to obtaining MRI scanning or those with claustrophobia will be excluded.
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approach. After that, we will correct the time of acquisition of each slice. Next, we will correct
head motion by registering each functional volume to the volume with the minimum outlier
fraction, where each transformation is concatenated with the transformation to standard space,
to avoid unnecessary interpolation. We will further spatially normalize images to the ENIGMA
EPI template in Montreal Neurological Institute (MNI) standard space for group analysis, and
then smooth the images with a 4-mm kernel. We will then regress out the effects of nuisance
variables such as the linear trend, 6 motion parameters (3 rotational and 3 translational
directions), their 6 temporal derivatives (rate of change in rotational and translational motion)
and time courses from the local white matter and cerebrospinal fluid (CSF) from lateral
ventricles. Finally, we will censor the time points with excessive motion (> 0.2 mm) estimated as
the magnitude of displacement from one time point to the next, including neighboring time points
and outlier voxels fraction (>0.1) were censored from statistical analysis. We will make outlier



images based on the time points with excessive motion, and enter then into the individual-level
general linear model to remove the influence of these time points on estimates of functional
connectivity while maintaining the temporal structure of the data.

Individual-level Analyses: Voxel-wise seed-based functional connectivity analyses will be
performed using the CONN toolbox (Whitfield-Gabrieli et al, 2012) and in-house scripts written
in Matlab (version R2016b). The seed regions of interest will be amygdala, hippocampus, ACC
and mPFC that are defined by the anatomical mask images from the WFU_PickAtlas software
(http://fmri.wfubmc.edu/software/pickatlas).Following Kaiser et al (2016), the time course will be
segmented into 36-s windows, sliding the onset of each window by 18 s, for a total of 15-19
windows (depending on length of the functional scan). The duration of sliding windows is
selected to optimize the balance between capturing rapidly shifting dynamic relationships (with
shorter windows) and achieving reliable estimates of the correlated activity between regions
(Leonardi and Van De Ville, 2015). Next, the Fisher’s z-transformed Pearson’s correlation
coefficient will be computed for each sliding window between the truncated time course of the
seed and that of all other voxels, yielding a set of sliding-window beta maps for each participant.
Dynamic rsFC will be estimated by calculating the SD in beta values at each voxel.

Group-level analyses: For each seed area, individual dynamic rsFC maps will be entered into a
whole-brain t-test to investigate the between-group differences. Correlation analyses to examine
the relationship between severity of PTSD and dynamic rsFC will be conducted within the PTSD
group based on a correlation between CAPS scores and dynamic rsFC at each voxel per seed
region. Age, sex, depression severity, traumatic brain injury (TBI), alcohol use, childhood
trauma exposure, adult trauma exposure, medication status and scanner site will be included as
covariates of no interest. Group-level effects will be considered significant if results are height-
thresholded at p < 0.001 and survive p < 0.05 cluster-level false discovery rate (FDR)
corrections. In the aforementioned mega-analysis, we will pool all subjects together to calculate
the functional connections between seed areas and the rest of the brain, and will find some
target areas significantly connected with seeds. The mega-analysis will include a covariate for
site. Sites with multiple scanners will be subdivided into multiple sites. To avoid being biased by
the mega-analysis due stratification or interaction effects, we will then extract the values of
functional connections between seeds and targets, and enter them into a meta-regression
approach to validate the findings. We will also explore available whole brain meta-regression
analytic strategies.
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