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A B S T R A C T

Background: Recent studies examining the association between posttraumatic stress disorder (PTSD) and ac-
celerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age,
have yielded mixed results.
Methods: We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in as-
sociation with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric
Genomics Consortium PTSD Epigenetics Workgroup (combined N=2186). Associations between demographic
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and cellular variables and accelerated DNA methylation age were also examined, as was the moderating in-
fluence of demographic variables.
Results: Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma ex-
posure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced sig-
nificant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps= 0.028 and 0.016,
respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated
with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not
associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD
variables by demographic factors.
Conclusions: Results suggest that traumatic stress is associated with advanced epigenetic age and raise the
possibility that cells integral to immune system maintenance and responsivity play a role in this. This study
highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated
DNA methylation age and the importance of furthering our understanding of the neurobiological and health
consequences of PTSD.

1. Introduction

Traumatic stress (e.g., psychiatric symptoms related to traumatic
experiences) may precipitate a host of negative outcomes inclusive of
psychological and medical conditions (Schnurr et al., 2000; Afari et al.,
2014). Theory (Miller and Sadeh, 2014; Lohr et al., 2015; Williamson
et al., 2015) and empirical research (Roberts et al., 2017, Li et al., 2017;
Wolf et al., 2016, 2017) suggest that traumatic stress may also advance
the pace of cellular aging such that it exceeds that of chronological
aging and this may potentially lead to, or be a marker for, negative
health outcomes (Horvath, 2013).

There are highly reliable age-related changes in DNA methylation
(DNAm) throughout the epigenome (Christensen et al., 2009). Recent
research has capitalized on these associations and on the substantial
information available from state-of-the-art DNAm arrays, capturing
methylation levels at hundreds of thousands of CpG (Cytosine-phos-
phate-Guanine) loci using just a single beadchip and a small amount of
DNA, to develop methylation-based estimates of chronological age.
Specifically, Hannum et al. (2013) developed a DNAm age algorithm
derived from whole blood that was based on 71 probes (89 in the “all
data” model) and it correlated with chronological age at r=0.96. In-
dependently, Horvath (2013) identified 353 DNAm loci that when
combined into a weighted summary score also evidenced very strong
correlations (r=0.96) with chronological age across multiple tissues.
Support for the utility and validity of DNAm age is evident in research
demonstrating that DNAm age estimates that are higher than expected
given chronological age (i.e., “accelerated DNAm age”) are associated
with age-related disorders and mortality (Chen et al., 2016;
Christiansen et al., 2016; Horvath et al., 2015; Levine et al., 2015;
Marioni et al., 2016; Marioni et al., 2015). Collectively, this suggests
that accelerated DNAm age may be a biomarker for a generalized pa-
thological cellular aging process, with a variety of environmental con-
ditions and diseases associated with this basic epigenetic “clock.”

Emerging research raises the possibility that traumatic stress may be
associated with advanced DNAm age, though results to date have been
mixed. Specifically, Wolf et al. (2016, 2017) reported that symptoms of
posttraumatic stress disorder (PTSD) were associated with DNAm age
acceleration (relative to chronological age) per the Hannum, but not the
Horvath (Wolf et al., 2016), algorithm in two samples of predominately
male U.S. military veterans (sample sizes ranged from 281 to 339). In
contrast, in a Dutch sample of 96 male military veterans, Boks et al. (2015)
reported that PTSD was negatively associated with Horvath DNAm age
estimates over time, while combat trauma was positively associated with
Horvath DNAm age. In that study, the relationship between DNAm age
and chronological age was not factored in to the definition of age accel-
eration. In a largely female civilian sample (n=392), Zannas et al. (2015)
found no evidence of an association between childhood trauma exposure
or PTSD and accelerated Horvath DNAm age relative to chronological age.
However, the authors did report an association between personal life
stressors and advanced Horvath DNAm age, particularly among older

participants. The variability in the approach to measuring DNAm age
across these studies (e.g., Horvath versus Hannum metrics; inconsistent
use of operational definitions that model the relationship between DNAm
age and chronological age) and the variability in results across studies to
date make it difficult to discern a clear pattern of association between
traumatic stress and accelerated aging in DNAm.

Given this, the aim of this study was to bring the strengths of the
Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup
(Ratanatharathorn et al., 2017) to bear on the evaluation of the asso-
ciation between traumatic stress and accelerated DNAm age using data
from nine cohorts encompassing 2186 subjects. The PGC (Sullivan
et al., 2017), which began in 2007 and added the PTSD Working Group
in 2012, represents the largest consortium in biological psychiatry; this
study used a subset of PGC-affiliated datasets with relevant data.

1.1. Study aims

The specific aims of the study were to: (1) evaluate DNAm age and
DNAm age acceleration1 in association with key demographic (i.e., sex,
ancestry, age) and cellular variables (i.e., white blood cell proportions);
(2) examine associations between trauma exposure and PTSD with ac-
celerated DNAm age; and (3) examine demographic variables that might
moderate the association between traumatic stress and accelerated
DNAm age. Given that PTSD-related accelerated DNAm age has only
been observed with the Hannum et al. DNAm age algorithm (Wolf et al.,
2016, 2017), we hypothesized that PTSD diagnosis and severity would be
associated with accelerated Hannum et al. DNAm age, but we in-
vestigated Horvath DNAm age in parallel. These goals were accom-
plished by deploying a standardized script and instructions to individual
investigators with relevant data who participate in the PGC PTSD Epi-
genetics Workgroup and then meta-analyzing results across cohorts.

2. Method

2.1. Participants

Table 1 lists the individual cohorts included in the meta-analysis
and key demographic and methodological details of the studies. There
were seven military samples. These included: (1) the National Center
for PTSD cohort (NCPTSD; Logue et al., 2013), a sample of 465 white,
non-Hispanic trauma-exposed male and female veterans from mixed
war eras and a subset of their trauma-exposed spouses2; (2)

1 While the primary variable of interest in this study captured the extent to which
DNAm age deviated from chronological age along a spectrum ranging from under-pre-
dicted age to over-predicted age, for the sake of simplicity, we refer here to the over-
predicted/accelerated end of this spectrum.

2 Examination of this cohort by Wolf et al. (2017) focused on a subset of 339 veterans,
employed a different definition of PTSD than that used here, and did not evaluate the
Horvath index.
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Translational Research Center for TBI and Stress Disorders (TRACTS)
cohort, a sample of 289 primarily white, non-Hispanic male and female
veterans who deployed to Iraq and/or Afghanistan (McGlinchey et al.,
2017; Sadeh et al., 2016; Wolf et al., 2016)3; (3) the Marine Resiliency
Study (MRS; Baker et al., 2012; Nievergelt et al., 2015), a sample of 126
male mixed-ancestry Marines who were deployed to Afghanistan and
who were assessed pre, and at 3- and 6-months post-deployment (PTSD
data and DNAm data for this study reflect the time point with the most
severe symptoms post-deployment); (4) the Army Study to Assess Risk
and Resilience in Service Members (Army STARRS; Ursano et al., 2014;
Stein et al., 2016), a sample of 102 male Army service members of
primarily European ancestry who were assessed pre- and post-deploy-
ment to Afghanistan (data for this study were from the 3-month post-
deployment assessment); (5 & 6) the Mid-Atlantic Mental Illness Re-
search Education and Clinical Center PTSD Study (Mid-Atlantic
MIRECC; Ashley-Koch et al. 2015), two related cohorts of male and
female veterans who deployed to Iraq and/or Afghanistan (one cohort,
MIRECC-a, was white, non-Hispanic [n=176] and the second cohort,
MIRECC-b, was black, non-Hispanic [n=369]); and (7) the Dutch
Prospective Research in Stress-related Military Operations (PRISMO)
study (Boks et al., 2015), a sample of 62 male Dutch soldiers who were
assessed pre- and 6-months post-deployment to Afghanistan (data for
this study come from the post-deployment PTSD assessment).4 There
were two non-military cohorts: (1) the Detroit Neighborhood Health
Study (DNHS; Ruggiero et al., 2003; Uddin et al., 2010), a sample of
179 primarily black male and female urban community members; and
(2) the Grady Trauma Project (GTP; Gillespie et al., 2009; Binder et al.,
2008), a cohort of 418 primarily black male and female urban com-
munity members. The total sample size across all cohorts was 2186.
This included 855 lifetime PTSD cases and 516 lifetime controls and
876 current PTSD cases and 1228 current controls.5 All participants
were adults. Additional details on these cohorts and the PGC PTSD
approach to DNAm analyses are available in Ratanatharathorn et al.
(2017).

2.2. Measures

Given variability in the measures used to assess trauma exposure and
PTSD symptoms (Table 1), we provided guidance and instruction on the
scoring of these variables in order to harmonize the phenotypes of in-
terest. Total trauma exposure reflected a count of the number of different
types of lifetime traumatic experiences (though studies differed with
respect to the specific type and number of events that were included in
each measure). Measures of childhood trauma reflected a count of the
number of different types of traumatic events (e.g., witnessing family
violence, sexual abuse, physical abuse, or neglect occurring prior to age
18). Three studies employed the Childhood Trauma Questionnaire (CTQ;
Bernstein et al., 2003) or a near identical version of the measure.6 In
order to harmonize the approach to scoring this measure and keep the
scaling consistent with the other measures of childhood trauma, this
scale was scored to reflect a 0–3 count of any exposure to sexual abuse,
physical abuse, and/or neglect. Our use of a variable representing the

number of different types of traumatic experiences was based on the
need to use a consistent definition of trauma across the various cohorts
(which utilized different trauma inventories) to aid in interpretation of
results. It was also based on evidence that the number of different types
of traumatic experiences poses the strongest risk for the development of
PTSD and other psychopathology, compared to other metrics of trauma
exposure (e.g., Hedtke et al., 2008). Current (past month) and lifetime
(worst period of symptoms) DSM-IV PTSD diagnostic determinations
were based on the established scoring instructions for each measure
employed by each study, and PTSD severity was based on total self-report
or interviewer-rated severity (e.g., total score on the PTSD Checklist
(Weathers et al., 1993) or total frequency+ intensity ratings on the
Clinician Administered PTSD Scale (Blake et al., 1995)). As not all studies
had data pertaining to each variable of interest (Table 1), the sample size
for each meta-analysis varied as detailed below.

2.3. Procedure

The last author, in consultation with the first author, developed an R
script to deploy to data analysts at each study. The analysts followed
the aforementioned guidance for scoring each variable, executed the
script, and sent summarized results to the first and last author for meta-
analysis. Results were carefully screened for potential errors (e.g.,
missing or mis-coded variables, inconsistent sample sizes, etc.) prior to
meta-analysis.

DNA was extracted from peripheral blood samples according to the
procedures identified in the original publications for each cohort
(Table 1). Genotyping was completed on a variety of genome-wide
arrays and for this study, is relevant only for the development of
principal components (PCs) for use in ancestry evaluation (Table 1). All
studies employed the Illumina Infinium Human Methylation BeadChip,
with details on methylation procedures for each study available7 in the
original publications (Table 1) and the DNAm processing pipeline de-
scribed in Ratanatharathorn et al. (2017). Each study site obtained local
IRB approval and all participants provided written informed consent.
The IRB of the VA Boston Healthcare System approved the meta-ana-
lytic procedures of the summarized data.

2.4. Statistical procedures

2.4.1. Ancestry
PCs were calculated to reflect ancestry within each cohort from

either the genotyped data (in most cases) or the DNAm data (Table 1).
The first three PCs were controlled for in all analyses in GWAS-based
ancestry inferences, whereas PCs 2–4 were controlled for in the DNAm-
based ancestry analyses as described in Ratanatharathorn et al. (2017).
Both sets of PCs reflect ancestry. While SNP-based PCs are more
common, as detailed by Ratanatharathorn et al., when DNAm probes
located within 1 base pair of a SNP are used to index ancestry (i.e.,
essentially proxies for the SNP), the resulting PCs are significantly
correlated with genome-wide SNP-based PCs. Ratanatharathorn et al.
showed that in the PGC PTSD Epigenetics workgroup data that is also
featured in this study, PCs 2–4 derived from probes within 1 base pair
of SNPs aligned with SNP-based PCs 1–3. These ancestry PCs from
DNAm data are distinct from quantification of cell mixtures, batch ef-
fects, and white blood cell counts (see below).

2.4.2. DNAm age, white blood cell counts
Two metrics of DNAm age were computed. Horvath DNAm age

estimates were computed per the instructions on Dr. Horvath’s website

3 Examination of this cohort by Wolf et al. (2016) employed a different definition of
PTSD than that used here.

4 Examination of this cohort by Boks et al. (2015) was based on a larger sample, did not
include evaluation of the Hannum DNAm age index, and was based on a different op-
erational definition of the association between DNAm age and chronological age than that
employed here.

5 The number of controls differs as a function of which datasets had current and/or
lifetime PTSD diagnostic data. For analyses involving lifetime PTSD, we only included
cohorts that specifically assessed history of the disorder (worst period of symptoms) as it
is unknown if current controls had a history of PTSD and we had no index of the severity
of past symptoms unless the study explicitly assessed lifetime symptoms.

6 One study (DNHS) combined items across the CTQ with another measure (Table 1)
and therefore was not included in CTQ-specific analyses. Army STARRS used a near-
identical version of the CTQ and was included in CTQ-specific analyses.

7 Details concerning the use of the Infinium beadchip in the DNHS cohort are not yet
available in the published literature, thus the references listed in Table 1 for this cohort
are included to provide a more general overview of the study methodology. An overview
of the DNAm processing pipeline employed for all cohorts included in this meta-analysis
are provided in the methods section of this paper and in Ratanatharathorn et al. (2017).
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(https://labs.genetics.ucla.edu/horvath/dnamage/) on the raw (non-
normalized) probe data as the Horvath program includes a normal-
ization step at part of its procedures. The algorithm is based on 353
probes. The Horvath website outputs DNAm age estimates as well as
proportional white blood cell (WBC) counts estimated from the me-
thylation data according to the Houseman method (Houseman et al.,
2012; Jaffe and Irizarry, 2014.) These WBC estimates (CD8 T cells, CD4
T cells, B cells, natural killer [NK] cells, and monocytes) were retained
as covariates in the analyses and their potential associations with
DNAm age residuals were evaluated accordingly. Cleaning and im-
putation of the methylation data at each site followed the protocol for
the PGC-PTSD EWAS group. This protocol is described in detail by
Ratanatharathorn et al. (2017), and will only be described briefly here.
Individual methylation values failing to meet a detection p-value
threshold of 0.001 were set to missing. Subjects and probes with more
than 10% missing data were excluded. Samples with intensity of less
than 50% of the experiment-wide mean or with intensity< 2000 ar-
bitrary units were excluded. Probes that cross hybridize between au-
tosomes and sex chromosomes (Chen et al., 2013) were excluded.
Normalization was performed using beta mixture quantile dilation
method as implemented in the wateRmelon (Touleimat and Tost, 2012;
Pidsley et al., 2013) Bioconductor package. Missing data were imputed
using the impute package with a k nearest neighbor method (http://
www.bioconductor.org/packages/release/bioc/html/impute.html). An
empirical Bayes batch-correction method (ComBat; Johnson et al.,
2007), as implemented in the Bioconductor sva package (Leek et al.,
2013), was used to remove chip effects and systematic variation due to
chip and sample position on the chip. Hannum et al.’s “all data” algo-
rithm (inclusive of 89 probes) was used to calculate DNAm age on the
batch-corrected and normalized probe values. This algorithm reflects
the linear weighted combination of methylation levels at the select loci.
Across studies, the maximum percentage of subjects with missing data
on a given probe in the Hannum et al. algorithm was 3.29%, with
0.11% as the maximum number of imputed probes across subjects and
probes in any study.8 One probe (cg25428494) in the Hannum algo-
rithm was excluded from all studies because it was identified as a cross-
reactive probe that binds with elements on the sex chromosomes (see
above).

2.4.3. Data analyses
We first evaluated the meta-correlations between Horvath and

Hannum DNAm age estimates with chronological age and the corre-
lations between Horvath and Hannum age estimates using the metacor
package in R. Each study calculated DNAm age residuals by regressing
each DNAm age estimate on chronological age and saving the un-
standardized residuals from this equation. As described elsewhere
(Wolf et al., 2016), when DNAm age is over-estimated relative to
chronological age, this yields positive DNAm age residuals and can be
conceptualized as accelerated DNAm age. Likewise, when DNAm age
is under-estimated relative to chronological age, this is reflected in
negative age residuals and is thought to denote decelerated cellular
aging. These residualized variables were the primary dependent
variables for use in the analyses. We examined the average age re-
sidual across studies and the correlation between the Horvath and
Hannum age residuals. Analysts for each cohort then executed a series
of multiple regression analyses, with the parameter coefficients from
each cohort subsequently meta-analyzed. Specifically, the script in-
cluded procedures to regress each DNAm age residual on (separately)

childhood trauma, total lifetime trauma, current and lifetime PTSD
diagnosis, and current and lifetime PTSD severity. In each of these six
regressions (per each DNAm age metric), we covaried for WBC pro-
portions, sex, and the three ancestry PCs reflecting either population
stratification (in mixed ancestry samples) or population substructure
(in homogenous ancestry samples). This allowed us to meta-analyze
associations between these key demographic factors and advanced
DNAm age. Interaction terms between age and each trauma exposure
and PTSD variable and between sex and each trauma exposure and
PTSD variable were computed and the interaction term added to each
model predicting DNAm age residuals. This step was omitted for
samples with no variability in sex and/or age. Regressions were pro-
tected F-tests given that all covariates and predictors (and interaction
terms) were included in the same analysis; the difference in the exo-
genous variables across regressions was based on which trauma or
PTSD variable was included, as determined by the available data for
each cohort. All study-specific results were summarized and sent to
the first author for meta-analysis.

Meta-analysis was conducted in R using the rma function from the
metafor package (Viechtbauer, 2010). A random effects model was used
to meta-analyze across cohorts. All regression parameter coefficients re-
ported are unstandardized. To evaluate potential heterogeneity of effects,
we also conducted a meta-analysis of interaction terms for the moderating
influence of sex and chronological age on the association between each
traumatic stress variable and DNAm age residuals. Finally, to explore
potential methodological sources of variation on meta-analytic results,
meta-analyzed across studies that used the same assessment tool (i.e., the
most common measure employed to assess each phenotype of interest
across studies). For childhood trauma, we meta-analyzed across the
subset of studies using the CTQ (n=487 across 3 studies), as differential
effects for the CTQ compared to other childhood trauma measures have
previously been reported (Polanczyk et al., 2009). Separately, we also
meta-analyzed results across studies that employed select childhood items
from the Traumatic Life Events Questionnaire (TLEQ; n=1295 across 4
studies). For lifetime trauma exposure, we focused on studies that em-
ployed the TLEQ (n=1296 across 4 studies) and for current PTSD di-
agnosis and severity, we focused on studies that employed the gold-
standard Clinician Administered PTSD Scale (CAPS; diagnosis: n=1216
across 4 studies; severity: n=1210 across 4 studies). As the majority of
the studies (3 out of 5 for PTSD diagnosis; 3 out of 4 for PTSD severity)
with any lifetime PTSD diagnostic and/or severity data used the CAPS, we
did not prioritize a CAPS-specific lifetime PTSD analysis in the results, but
instead footnote these results for completeness.

Given that parallel tests were conducted for the Horvath and
Hannum algorithms, we corrected the p-value threshold in a manner
that also took into account the correlation between the two metrics
by adjusting for 1.8 tests (adjusted p-value threshold= 0.028),9

though we note that prior studies examining both metrics have not
adjusted for multiple sets of tests (e.g., Chen et al., 2016; Quach et al.,
2017; Marioni et al., 2015). For significant effects of interest (i.e.,
those relating to trauma and PTSD), we report the I2 statistic, an
index of the proportion of the variance across studies that is due to
true heterogeneity across populations (i.e., not an absolute index of
the heterogeneity of effect size; Borenstein et al., 2017). We include
this statistic for completeness, but note that caution is warranted in
interpreting it because meta-analyses with a small number of con-
tributing cohorts tend to yield inexact and systematically biased va-
lues (Von Hippel, 2015).

8 Information on missing probe values is not output by the Horvath website and thus
we were only able to obtain this information for the Hannum et al. algorithm.

9 Specifically, using a permutation testing procedure for use in raw data (see Miller
et al., 2016), we determined the effective number of tests given the correlation across the
Hannum and Horvath age residuals as evaluated in the TRACTS data cohort (raw data
from that cohort were available to the first and last author and this procedure can only be
performed on raw, not summarized, data). This revealed that the adjusted p-value re-
presented 1.8 tests based on the r=0.49 DNAm age residual association in that dataset.
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3. Results

3.1. Associations between DNAm age and chronological age across Hannum
and Horvath models

The meta-correlation between Hannum DNAm age and chronological
age was r=0.87 (SD=0.09). The meta-correlation between Horvath
DNAm age and chronological age was r=0.87 (SD=0.07; Table 2). In
general, the strength of this correlation was associated with the variance
in chronological age in each sample. This effect is shown in Fig. 1, which
plots the association between the variance in age in each sample and the
correlation between DNAm age and chronological age for both DNAm age
algorithms (linked via barbell for each study). The Hannum and Horvath
age estimates correlated with each other at r=0.89 in the meta-analysis.
Across studies, the mean Hannum age residual was<0.001 years
(SD=4.33 years, range: −12.21 to 15.68 years), and the mean Horvath
age residual was<0.001 years (SD=4.33 years, range:−12.98 to 15.71
years). Upon meta-analysis, the Hannum and Horvath age residuals were
moderately correlated with each other (r=0.56). Details on these sta-
tistics are provided in Table 2.

3.2. Associations between DNAm age residuals and demographic and
cellular variables

Tables Table 3 and S1 show the patterns of association between
DNAm age residuals and sex, ancestry, and WBC proportions, meta-
analyzed from the covariate portion of the regression equations. Of
note, at the meta-analytic level (Table 3), there were significant asso-
ciations between sex and both DNAm age residuals, such that women
had decelerated aging relative to men. CD4 T cell proportions were
inversely associated with both DNAm age residuals, and NK cell counts
were positively associated with Hannum DNAm age residuals. Forest
plots for these significant meta-analytic effects are shown in Fig. 2.

3.3. Associations between trauma, PTSD, and DNAm age residuals

Tables S2 and Table 3 show the individual and meta-analytic results,
respectively, for the regressions of each DNAm age residual on the trauma
and PTSD variables. There were no significant meta-analytic effects of
childhood (or lifetime) trauma exposure on either DNAm age residual
(smallest p=0.12) when evaluating all metrics of trauma exposure across
all studies. To evaluate potential methodological sources of variability
(see above), we then examined associations between childhood trauma as
assessed by the CTQ (3 studies) and separately, items on the TLEQ (4
studies). This analysis revealed that CTQ-defined childhood trauma ex-
posure was positively associated with Hannum DNAm age residuals, with
overlapping 95% confidence intervals for the magnitude of the effect
across cohorts (meta β=0.46, p=0.028 which was exactly equal to the
adjusted threshold, I2=0, see Fig. 3, Tables Table 3, S3) while there was
no significant effect for studies utilizing the TLEQ (Tables Table 3, S3). No
significant effects emerged when limiting the evaluation of lifetime
trauma history to the TLEQ (Tables Table 3, S3).

Meta-analyses revealed a near significant association between life-
time PTSD diagnosis and Hannum DNAm age residuals (meta β=0.53,
p=0.06, total n=1371) and a significant association between lifetime
PTSD severity and Hannum DNAm age residuals (meta β=0.01,
p=0.016, I2= 0, total n=1317, see Tables Table 3, S3, Fig. 3), with
overlapping 95% confidence intervals across the cohorts.10 There were
no significant associations between current PTSD diagnosis or severity
and DNAm age residuals (smallest p=0.13; Tables Table 3, S3). The
CAPS-specific association between current PTSD severity and Hannum
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10 When these two analyses were restricted to the three studies that employed the
CAPS for lifetime PTSD assessment, results were largely unchanged: meta β for lifetime
PTSD dx=0.58, p=0.066; meta β for lifetime PTSD severity= 0.01, p=0.019.
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DNAm age residuals just missed the unadjusted threshold for statistical
significance (p=0.06); there was no significant association for current
PTSD diagnosis when limiting the analysis to studies using the CAPS
(Tables Table 3, S3).

All significant trauma and PTSD effects noted above were with the
Hannum DNAm age residuals. There were no significant associations
between any of the trauma or PTSD variables and Horvath DNAm age
residuals (Tables Table 3, S2, S3). There were also no significant meta-
analytic interaction effects to suggest a moderating influence of sex or
chronological age on the associations between trauma and PTSD with
either set of DNAm age residuals (smallest p=0.10; Table S4).

4. Discussion

This was the largest and most demographically heterogeneous

evaluation of the associations between trauma exposure, PTSD, and
accelerated aging in DNAm, spanning nine studies and over 2000 par-
ticipants. Results of meta-analyses suggested that both childhood
trauma exposure (when assessed with the CTQ) and lifetime PTSD se-
verity (assessed with the CAPS for the majority of studies with lifetime
PTSD severity data), were associated with accelerated epigenetic aging.
Associations between lifetime PTSD diagnosis and current PTSD se-
verity (when assessed with the CAPS) and DNAm age residuals just
failed to meet the unadjusted threshold for statistical significance,
though the direction of the effect was consistent with those for lifetime
PTSD severity and CTQ-measured childhood trauma. Though there was
variability in the p-values associated with each cohort, collectively,
results suggest an overlapping pattern of association between traumatic
stress and acceleration of the pace of the epigenetic clock, albeit the
relationship was modest in magnitude. Each additional exposure to a

Fig. 1. shows the relationship between variance in each study in
chronological age and the magnitude of the correlation between
chronological age and Horvath and Hannum DNAm age estimates
(linked via barbell for each study).

Table 3
Meta-analytic associations between Demographic, Cellular, and Traumatic Stress Variables in Association with DNAm Age Residuals.

N Hannum Horvath

beta se p beta se p

Sex 2185 −1.1455 0.389282 0.003255 −0.93492 0.334843 0.005236
PC1 2152 0.23162 2.367165 0.922054 1.0379 2.391098 0.664239
PC2 2152 0.47236 2.046801 0.817486 −0.24999 2.016886 0.901355
PC3 2152 1.666092 2.499842 0.505105 2.673311 2.79451 0.338754
CD8T 2158 −0.00293 0.050745 0.954011 2.946052 2.345547 0.209109
CD4T 2143 −12.1967 3.610022 0.000729 −4.94381 2.107359 0.018978
Bcell 2127 0.031993 0.043265 0.459626 −5.40386 4.355332 0.214699
NK 2142 8.444542 3.10706 0.006571 −0.08119 0.083031 0.328179
Mono 2170 0.139378 0.109426 0.20276 0.034167 0.107404 0.750396
Childhood Trauma 2009 0.060947 0.096259 0.526634 −0.03471 0.110594 0.753619
Childhood Trauma (CTQ) 487 0.459596 0.209814 0.028488 −0.11822 0.237175 0.618178
Childhood Trauma (TLEQ) 1295 −0.1468 0.173309 0.396967 −0.16058 0.132627 0.225986
Lifetime Trauma 2024 0.017713 0.036284 0.625429 −0.05254 0.033963 0.121898
Lifetime Trauma (TLEQ) 1296 −0.02009 0.040609 0.620864 −0.05992 0.043818 0.171457
Current PTSD Dx 2104 0.12899 0.189075 0.495103 −0.11764 0.193403 0.542997
Current PTSD Sev 2081 0.004478 0.002969 0.131459 0.000469 0.003043 0.877467
Current PTSD Dx (CAPS) 1216 0.341131 0.262793 0.194254 0.010832 0.251552 0.965654
Current PTSD Sev (CAPS) 1210 0.008573 0.004587 0.061615 0.004787 0.004356 0.271811
Lifetime PTSD Dx 1371 0.529147 0.276291 0.05547 0.122311 0.410977 0.766
Lifetime PTSD Sev 1251 0.011099 0.004608 0.01601 0.005694 0.006226 0.3604

Note: Significant effects are shown in bold font. DNAm=DNA methylation; PC=principal component; NK=natural killer cells; mono=monocytes; CTQ=Childhood Trauma
Questionnaire; TLEQ=Traumatic Life Events Questionnaire; PTSD=posttraumatic stress disorder; dx=diagnosis; sev= severity; CAPS=Clinician Administered PTSD Scale.
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new type of childhood trauma on the CTQ was associated with nearly a
half-year of age acceleration; the difference with respect to age accel-
eration between someone with a score of 0 on the CAPS versus a highly
symptomatic patient with a score of 100 would be expected to be about
1.1 years. Small effects in DNAm studies are commonplace and it is
critical to next examine the functional effects of such differences, which
may be considerable with respect to gene expression, and to model the
potential cumulative effects of advanced DNAm over time (Breton et al.,
2017).

As many as one-third of patients with PTSD exhibit a chronic form
of the disease that persists for years (Kessler, 2000) and the chronicity
and severity of such symptoms would be expected to magnify the ne-
gative health correlates of PTSD. Indeed, one study that modeled PTSD
burden as defined by both symptom severity and duration (e.g.,
chronicity) found that the burden of the disease evidenced stronger
negative associations with cortical thickness than did PTSD severity
alone (Lindemer et al., 2013). Based on this, it is possible that effect size
estimates in this study underestimate the association between traumatic
stress and cellular age because they do not account for the burden of
traumatic stress across time. Future research may benefit from quanti-
fying the burden of PTSD as a function of both disorder severity and
chronicity. Consistent with this interpretation, we found that

childhood, but not lifetime, trauma exposure was associated with ac-
celerated aging and this could suggest: (a) that there are critical win-
dows during childhood in which the effects of trauma exposure are
particularly damaging; and/or (b) that childhood trauma could be a
marker for a more prolonged period of psychiatric distress that con-
tributes to overall greater burden. Longitudinal studies are necessary to
evaluate these possibilities.

Associations between traumatic stress and advanced epigenetic age
were observed for the Hannum et al. algorithm but not for the Horvath
metric. To our knowledge, prior positive associations between PTSD
and epigenetic age have only been shown for the Hannum et al. metric
(Wolf et al., 2016, 2017), while positive effects for general life stressors,
violence, and trauma exposure have previously been reported for the
Horvath index (Zannas et al., 2015; Boks et al., 2015; Jovanovic et al.,
2017). It is remarkable that the two algorithms show differential pat-
terns of association given that they are highly correlated with each
other and with chronological age. Despite these strong correlations, the
components of each age algorithm that do not index chronological age,
as captured by the age residuals, appear to be fairly distinct from each
other: the two age residuals shared approximately 25% of the variance
and evidenced differential patterns of association with the WBCs in this
study. The two algorithms have just 6 loci and 11 genes in common

Fig. 2. shows the forest plots for the significant meta-analytic associations between Hannum (left panel) and Horvath (right panel) DNAm age residuals and demographic and cellular
variables. Error bars represent 95% confidence intervals. Study abbreviations are defined in Table 1.
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(Wolf et al., 2016) and together with the results of this study, this
implies that each algorithm may be sensitive to different pathogenic
environmental and biological processes, though more research is
needed to test this. The strong meta-analytic correlations between both
DNAm age estimates and chronological age in the context of the re-
lationship between variance in age in each sample and the strength of
the DNAm age/chronological age correlation (Fig. 1) are also in-
formative. This supports the accuracy of the DNAm age estimates and
raises the possibility that in instances in which the correlation between
DNAm age and chronological age is weaker than expected, that this
may be due to limited age variance in the sample, and may not ne-
cessarily reflect a failure in the algorithm.

Results of this study underscore the importance of identifying the
biological mechanisms that link traumatic stress to age acceleration.
Zannas et al. (2015) examined the responsivity of the loci included in
the Horvath algorithm to the glucocorticoid receptor agonist dex-
amethasone and found that approximately 31% of the DNAm loci were
responsive to dexamethasone while over 80% of genes located near the
DNAm loci evidenced dexamethasone-related changes in gene tran-
scription. Consistent with this, about a quarter of the DNAm loci were
shown to be localized to glucocorticoid response elements. As well,
Davis et al. (2017) found advanced Horvath DNAm age to be correlated
with diurnal cortisol levels. This pattern of results is consistent with a
central role of stress hormones in PTSD (Yehuda, 2009). Dex-
amethasone-regulated genes also showed enrichment in gene networks
associated with age-related diseases (i.e., coronary artery disease, ar-
teriosclerosis, leukemia, etc.; Zannas et al., 2015). This raises the pos-
sibility that accelerated cellular aging in DNAm may link traumatic
stress to increased risk for pre-mature disease onset.

Complementary research on the loci included in the Hannum al-
gorithm has yet to be conducted and comparing the responsivity of
these loci to those in the Horvath algorithm is critical for understanding

differential patterns of association across the two metrics. As well,
evaluation of the sensitivity of the loci to other dynamic biological
processes implicated in PTSD, such as pro-inflammatory cytokines
(Passos et al., 2015), and catecholamines (Highland et al., 2015), would
help to elucidate the biological mechanisms involved in traumatic-
stress related accelerated aging. This type of evaluation is also im-
portant for determining whether epigenetic age acceleration is a me-
chanism for, or simply a biomarker of, early health decline. Behavioral
pathways to epigenetic aging are also critical to evaluate further, given
evidence that insomnia (which is also a symptom of PTSD) and obesity
(which is highly comorbid with PTSD; Pagoto et al., 2012) are asso-
ciated with accelerated DNAm age (Carroll et al., 2017; Nevalainen
et al., 2017).

We also observed meta-analytic effects suggesting that women, on
average, had decelerated aging relative to men (using both indices).
This has been reported previously in blood and brain tissue (Horvath
et al., 2016; Hannum et al., 2013) but the interpretation of the effect is
unclear. This finding could reflect an underlying differential rate of
epigenetic aging in men versus women, and/or differential suscept-
ibility to factors that cause epigenetic age to deviate from chronological
age across the sexes. These explanations are consistent with the
common finding that women tend to outlive men (Beltrán-Sánchez
et al., 2015), perhaps because their pace of cellular aging is attenuated.
On the other hand, the finding could indicate that the age algorithms
are simply more accurate in one sex over the other. There is preliminary
evidence to suggest that differential age acceleration across the sexes
does not alter the strength of the association between epigenetic age
and important clinical correlates, including traumatic stress in this
study, and time to death in prior work (Chen et al., 2016). This suggests
that regardless of the reason for the differential age acceleration across
sexes, the predictive power of accelerated epigenetic age is not di-
minished in one sex compared to the other.

Fig. 3. shows the forest plots for the significant meta-analytic asso-
ciations between childhood trauma (top panel) and lifetime PTSD
severity (bottom panel) and Hannum DNAm age residuals. Error bars
represent 95% confidence intervals. Study abbreviations are defined
in Table 1.
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We also observed a negative relationship between estimates of CD4
T cells and both DNAm age residuals and a positive association between
NK cells and Hannum age residuals. Similar patterns of association were
reported in meta-analyses of 13,000 individuals by Chen et al. (2016)
and in over 4600 individuals by Marioni et al. (2015). These findings
raise the possibility that cells that are integral to immune system
maintenance and responsivity play a role in altering the pace of the
epigenetic clock so that it loses synchronicity with the pace of chron-
ological aging. Alternatively, Chen et al. and Horvath et al. (2016)
combined information from age residuals and estimated WBC counts
and found that this metric was a better predictor of time to death (Chen
et al., 2016) and metabolic and inflammatory markers (Horvath et al.,
2016) compared to the DNAm age residuals alone. The combined index
was referred to as “extrinsic epigenetic age acceleration” and con-
ceptualized as a marker of the biological age of the immune system in
blood (Chen et al., 2016), however, it was not clear which components
of this combined metric were responsible for the increased predictive
strength of time till death. Studies of the responsivity of DNAm age
probes to inflammatory and anti-inflammatory agents could shed light
on how inflammation is associated with the DNAm age clock.

4.1. Study limitations

These results should be considered in light of a number of limita-
tions. First, this was a cross-sectional study and, as such, we cannot
infer causal associations between traumatic stress and accelerated
DNAm age. Second, given that the contributing studies had diverse
available data, there were different samples comprising each meta-
analysis. This also meant that we were unable to discern the relative
effects of childhood trauma exposure versus lifetime PTSD severity as
only one study (Grady Trauma Project) had both the CTQ childhood
trauma exposure variable and lifetime PTSD severity. For the same
reasons, we were unable to include childhood trauma and adult trauma
exposure in the same model or to evaluate the influence of chronic
interpersonal violence across the lifetime. Thus, as this line of work is
developed and new data become available, it will be important to
disentangle the relative effects of trauma exposure versus PTSD on
accelerated aging. As this meta-analysis was based on a relatively
nascent field with fewer than 10 contributing studies, statistical power
was also a potential limitation. However, power for meta-analyses
based on summary data across individual studies has been shown to be
similar to power for analyses in which data from distinct studies are
pooled to form one large sample (Olkin and Sampson, 1998; Mathew
and Nordstrom, 1999; Lin and Zeng, 2010a,b) and this applies to ge-
netic association studies as well (Lin and Zeng, 2010a,b; Sung et al.,
2014). Our pooled sample size should have provided adequate power in
this context, though inclusion of more cohorts into the meta-analysis
would strengthen results. As well, while we attempted to look for
sources of demographic variation in the results, there are undoubtedly
other variables that we did not have access to that might moderate the
primary associations (or otherwise serve as important covariates). This
concern is offset by the strength of the meta-analytic approach which
yields improved statistical power and generalizability of results across
populations relative to an individual cohort.

4.2. Conclusions

Evaluation of epigenetic cellular aging is in its infancy, with the vast
majority of research to date focused on the utility of the DNAm age
calculators to predict mortality and health outcome. This study was the
largest to evaluate traumatic stress-related advanced epigenetic age,
and to our knowledge, was the largest examination of any psychiatric
symptom domain in association with DNAm age to date. By deploying a
uniform data analytic script and harmonizing critical variables, our
analytic approach was able to eliminate some sources of methodolo-
gical noise compared to more traditional meta-analyses that are based

on published summary statistics. Results suggested that childhood
trauma (when assessed with a detailed instrument) and lifetime PTSD
severity were both associated with advanced DNAm age, though the
magnitude of the effect was small and additional research is needed to
determine how the chronicity of psychiatric symptoms might contribute
to accelerated aging. As genome-wide and epigenome-wide testing
move from the research to the clinical domains, assessment of epige-
netic age may become a practical approach for tracking an individual’s
cellular age, and testing the utility of interventions designed to slow the
pace of cellular aging. In the future, we may develop traumatic-stress
specific epigenetic age profiles that contribute to our understanding of
the neurobiological consequences of trauma and PTSD.
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